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Research ObjectivesResearch ObjectivesResearch Objectives

Develop fundamental 
understanding of humification
process from a chemical 
perspective
Investigate ways of manipulating 
enzyme chemistry to promote net 
humification

Impact of oxidizing soil minerals
Management of moisture/redox
regimes
Enzyme stabilization
Amendment strategies
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ApproachApproachApproach
Laboratory & Microcosm Studies 
(PNNL)

Enzyme stability
Wetting/drying, redox cycles
Mn oxide (Rice)
Fly ash

Field “Minicosm” Studies (Santee 
Exp. Forest)

Wetting/drying cycles
Fly ash and lime
Initial soil C content
13C tracer
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Laboratory StudiesLaboratory StudiesLaboratory Studies
Use model humification reaction (Nelson et al., 1979) involving 
polyphenol (orcinol, resorcinol), hydroxybenzoic acid (p-
hydroxybenzoic acid, vanillic acid), and amino acid (L-glycine, and L-
serine) monomers (2 mM each) and tyrosinase as the polyphenol
oxidase

Homogeneous systems:
pH 6.5 100 mM H2PO4 buffer primarily
Additional experiments at pH 5, 7.5, and 9

Heterogeneous systems
Porous silica
Fe(III)/Mn(IV) oxide minerals
Alkaline fly ashes (as received and after neutralization)
Calcareous soil alone and amended with fly ash
pH 6.5 initially
Some experiments under controlled moisture/atmosphere

Follow progress by UV-Vis spectroscopy (Kumada et al., 1967; Shindo
and Huang, 1984) to measure humification and, separately, enzyme 
activity
Measure total and extractable C in microcosm studies
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Enzyme Stabilization*Enzyme Stabilization*Enzyme Stabilization*
Porous silica (Davisil) stabilizes phenol oxidase in aqueous 
solution and significantly increases net humification in 
synthetic soil experiments
Stabilization dominates chemical factors

*Work funded jointly by CSiTE and NETL
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Humification: Physical 
Stabilization in Porous Silica

HumificationHumification: Physical : Physical 
Stabilization in Porous SilicaStabilization in Porous Silica
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Microcosm StudiesMicrocosm StudiesMicrocosm Studies

Microcosm inside “chimney” Chimneys mounted on gas manifold
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CyclesCyclesCycles

Wetting/drying in 
presence of air promotes 
humification when 
porous silica (Davisil) 
present

Repetitive cycles with 
small monomer additions 
more effective per unit of 
monomer added
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Catalytic SynergyCatalytic SynergyCatalytic Synergy

Phenol oxidase is at 
least twice as effective 
when Mn oxide is 
present
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Fly Ash and pHFly Ash and pHFly Ash and pH
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Effect of Alkaline Fly AshEffect of Alkaline Fly AshEffect of Alkaline Fly Ash
Three mechanisms involved in 
humification:

Physical stabilization
Direct Oxidation
Promotion of Oxidation and 
Condensation by Alkalinity

Enzyme-mediated  oxidation 
optimal at pH ∼7
Large pH dependence of 
condensation and nonenzymatic
path drives optimum to higher 
pH 
Liming of soils key to enhancing 
net soil C sequestration
C costs of lime/fly ash 
transportation need to be 
considered
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Soil Amendments and Impact of 
Fly Ash Properties

Soil Amendments and Impact of Soil Amendments and Impact of 
Fly Ash PropertiesFly Ash Properties
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Fly Ash and Humification in 
Soils

Fly Ash and Fly Ash and HumificationHumification in in 
SoilsSoils

Carbonate content of soil must be considered!
If no carbonate, then lignitic and sub-bituminous ashes 
probably better
If carbonate present, then need high-C ash to minimize 
reaction of organic acids to release inorganic carbon

For soils too distant from source of ash to make 
net sequestration feasible, management to 
maximize wetting/drying cycles, promote moderate 
to alkaline pH, and form Fe and Mn oxides is 
advised
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Field “Minicosm” StudyField “Field “MinicosmMinicosm” Study” Study
Two soils (ca. 60 kg/tank)

A (2.7%C) horizon (Lenoir Series, Aeric Paleaquult)
E (0.5%C) horizon (Goldsboro Series, Aquic Paleudult)

Three pH treatments
4.1 (native), 6.5 (lime), 6.5 (alkaline fly ash)

Four hydrologic treatments
Saturated; dry to field capacity (ca. 0.1 bars), then maintained
Saturated; dry to ca. 1 bar, then maintained
Saturated; dry to ca. 3 bars (controls saturation cycle length)
Maintained at ca. 3 bars 

Three replicates (total of 72 experimental units)
Simpler model humification reaction

Three monomers (resorcinol, p-hydroxybenzoic acid, and L-glycine)
E soils receive 13C-enriched glycine
ca. 800 g C/tank added in four 200-g aliquots (total of four hydrologic 
cycles)
enzymes as provided by soil

Started May 2004, first cycle length ca. 10 weeks
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MeasurementsMeasurementsMeasurements

Monitoring
Moisture @ 10 cm
Temperature
Redox potential (Pt electrode)

Sampling
Leachates: DOC, dissolved oxygen, total phenols, δ13C
Gas emissions: CO2 (Licor static chamber); N2O?
Soil cores: POM, MOM, total C and N, δ13C
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Santee Soil Humification – Crust 
Properties

Santee Soil Santee Soil HumificationHumification –– Crust Crust 
PropertiesProperties

Higher C levels and less 13C in crusts 
formed on ash treated soils

+90.1+85.3+64.4δ13C ‰
1.91.42.6[C] %
LimedControlAshMean

Effect of soil amendment

+52.8+85.4+86.7+94.8δ13C ‰
0.92.11.83.2[C] %
T4 (wettest)T3T2T1 (driest)Mean

Effect of watering regime

Lower C levels and less 13C in crusts formed under most 
heavily watered soil moisture regime (leaching effect?)

Crust in tanks w/o 
13C-labeled glycine
was -24.2 ‰
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Santee Soil Humification –
Partitioning of Soil C Stocks
Santee Soil Santee Soil HumificationHumification ––

Partitioning of Soil C StocksPartitioning of Soil C Stocks
Proportion of soil C in 
particulate organic matter and 
mineral-associated organic 
matter is not different between 
A- and E-horizons 

Humification products should 
associate with MOM
13C analysis of POM and MOM 
soil fractions is planned

Signature of 13C-glycine in 
monomer solution was 2320 ‰

1.6 to 6.4% of C in soil crusts 
was derived from glycine
monomer

Coefficient of variation in parenthesis

0.28
(0.05)

0.28
(0.08)

Fraction 
POM-C

3.5
(0.06)

20
(0.04)

MOM-C 
(mg g-1 soil)

1.3
(0.01)

7.5
(0.06)

POM-C 
(mg g-1 soil)

E-horizonA-horizonVariable

Partitioning of soil C between POM 
and MOM in A- and E-soils

-27‰ 2320‰

All 
other C

Glycine-C

Crusts
+50 to +100

MOM-C
???
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Santee Soil Humification – 13C in 
Leachates

Santee Soil Santee Soil HumificationHumification –– 1313C in C in 
LeachatesLeachates

Leachate samples were 
evaporated (~45 °C) and 
redissolved in deionized water

Volume of leachate adjusted 
to yield ~ 800 µg C for IRMS

Concentrated samples were 
placed on chromosorb and 
analyzed for 13C/12C ratios

Preliminary analysis of 9 
leachate samples indicated 
δ13C-values range from -1.8 to 
144 ‰

Mixing model calculations 
suggest that 1 to 7% of the 
DOC in these leachates
originated from 13C-labeled 
glycine in monomer solution
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Laboratory research suggests that humification
can be enhanced by:

Physical stabilization of enzyme and products in 
microporous materials (silica, charcoal)
Maintenance of high pH (liming, alkaline fly ash 
addition)
Increasing frequency of wetting/drying cycles
Practices that maintain optimum levels of soil oxide 
phases [Mn(IV), Fe(III)]

Field research to verify these observations is 
planned or already in progress

Significance & SummarySignificance & SummarySignificance & Summary


